Reaktiver Zucker nach mehr als 100 Jahren Suche nachgewiesen

Wednesday, 17th October 2018Ausgewählte Publikationen

Berliner und Potsdamer Forscher beobachten erstmals Spezies die der Nobelpreisträger Emil Fischer 1893 vorhersagte / Veröffentlichung der Ergebnisse in Nature Communications

Komplexe Zucker sind allgegenwärtig. Sie machen 80% der Biomasse aus und sind essenzielle Bestandteile von lebenden Organismen. Die chemische Herstellung von komplexen Zuckern ist jedoch nach wie vor sehr schwierig. Einem Team von Forschern um Prof. Dr. Kevin Pagel von der Freien Universität Berlin und Kollegen vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPIKG) in Potsdam sowie dem Fritz-Haber-Institut (FHI) Berlin ist es nun gelungen, die bereits 1893 vom späteren Nobelpreisträger Emil Fischer (1902) vorausgesagte Schlüsselkomponente bei der Reaktion von Zuckern experimentell nachzuweisen und die atomare Struktur der Schlüsselkomponente aufzuklären. Die Erkenntnisse werden nach Einschätzung der Wissenschaftlerinnen und Wissenschaftler helfen, die Reaktionen von Zuckerbausteinen besser vorherzusagen und deren Herstellung zu vereinfachen (Nature Communications, 09. Oktober 2018, doi 10.1038/s41467-018-06764-3).

 

20181001_Bild_PM Kevin

Dreidimensionale Struktur der Oxoniumionen von Traubenzucker

© Freie Universität Berlin/Kevin Pagel

Der Berliner Chemiker und Nobelpreisträger von 1902, Emil Fischer (1852-1919), beschrieb 1893 erstmals eine Reaktion, mit der zwei Zuckerbausteine zu einem größeren Molekül verknüpft werden können. Diese Reaktion wird seitdem genutzt, um größere Zuckerketten herzustellen, die heute unter anderem als Impfstoffe dienen.

Schon zu Fischers Zeiten war bekannt, dass bei der Reaktion zum Teil unerwünschte Nebenprodukte auftreten. Spätere Untersuchungen zeigten, dass die Kupplung über ein hochreaktives Zwischenprodukt, ein Oxoniumion, erfolgt, an das von zwei verschiedenen Seiten ein weiterer Baustein geknüpft werden kann. Welches der beiden möglichen Produkte bei der Reaktion entsteht, wird bis heute anhand von empirischen Beobachtungen gesteuert. Die Oxoniumionen wurden aufgrund ihrer Reaktivität bisher jedoch nie direkt beobachtet. Der Forschergruppe um Prof. Kevin Pagel (Freie Universität), Prof. Peter H. Seeberger (Max-Planck-Institut für Kolloid- und Grenzflächenforschung) und Prof. Gert von Helden (Fritz-Haber-Institut) gelang es nun erstmals, Oxoniumionen in der Gasphase des Vakuums einzufangen und dort genau zu untersuchen. Im Vakuum liegen Oxoniumionen in völliger Isolation vor. Ohne potenzielle Reaktionspartner sind sie so über mehrere Sekunden stabil und können charakterisiert werden. Um in dieser kurzen Zeit möglichst viele Informationen zu erlangen, wurden die reaktiven Zwischenprodukte in superflüssigem Helium schockgefroren und anschließend direkt durch Beschuss mit Laserlicht aus dem Freie-Elektronen-Laser des Fritz-Haber-Instituts untersucht. So wurde es erstmals möglich, die genaue atomare Struktur der Oxoniumionen zweifelsfrei zu entschlüsseln. „Damit gelang uns der direkte Nachweis der von Fischer vor über 100 Jahren vorgeschlagenen Schlüsselkomponente bei der Reaktion von Zuckern“, berichtet Kevin Pagel.

Die Ergebnisse haben eine Bedeutung, die weit über die Grundlagenforschung hinausgeht: Synthetische Zucker werden häufig pharmazeutisch genutzt. Sie dienen zum Beispiel als effektive Impfstoffe gegen eine Reihe von Infektionskrankheiten. Auch in alltäglichen Anwendungen sind sie von großer Bedeutung. Moderne Ersatzstoffe für Muttermilch enthalten beispielsweise eine Reihe von aktiven Zuckern, die essenziell für die Entwicklung des Immunsystems von Neugeborenen sind. „Für die Zuckerchemie sind die Ergebnisse ein wichtiger Durchbruch, da wir nun erstmals ohne aufwändiges Probieren Reaktionen vorhersagen können“, erklärt Peter H. Seeberger. So wird es in Zukunft möglich, sehr komplexe Zucker einfacher und sehr viel kostengünstiger herzustellen.

Pressekontakt:

Prof. Kevin Pagel, Institut für Chemie und Biochemie, Freie Universität Berlin und Abteilung Molekülphysik, Fritz-Haber-Institut der MPG, Tel. +49 30 8413–5646, E-Mail: kevin.pagel@fu-berlin.de

Originalveröffentlichung:

E. Mucha, M. Marianski, F.-F. Xu, D. A. Thomas, G. Meijer, G. von Helden, P. H. Seeberger, K. Pagel, Unravelling the structure of glycosyl cations via cold-ion infrared spectroscopy. Nature Communications 2018, 9, 4174.

 


Azubipreis der Max-Planck-Gesellschaft für Tuan Anh Mario Nguyen

Thursday, 20th September 2018Preise und Auszeichnungen

Wir freuen uns sehr mitteilen zu dürfen, dass Tuan Anh Mario Nguyen aus dem Elektroniklabor mit dem Azubipreis der Max-Planck-Gesellschaft ausgezeichnet worden ist. Der Preis wird alljährlich vom Präsidenten der Max-Planck-Gesellschaft an bis zu 20 Auszubildende verliehen. Mit diesem Preis werden herausragende berufliche und schulische Leistungen während der Ausbildung sowie die persönliche Entwicklung und das soziale Engagement der jungen Leute gewürdigt. Der Preis ist mit 750,00 Euro dotiert. Wir sind sehr stolz, dass auch in diesem Jahr einer der verliehenen Azubipreise der MPG an einen unserer Auszubildenden ging.

All rights reseved.

All rights reseved.


Watching the first steps of magnetic information transport

Thursday, 13th September 2018Diverses

Leider ist der Eintrag nur auf Englisch verfügbar.


Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

Monday, 16th July 2018Ausgewählte Publikationen

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung. Sie kommen in verschiedenen Varianten vor. Ferrimagnete bilden die größte Klasse von Magneten und bestehen aus zwei Arten von Atomen. Ähnlich einer Kompassnadel besitzt jedes Atom ein kleines magnetisches Moment, auch Spin genannt, welches von den Elektronen des Atoms erzeugt wird. Bei einem Ferrimagneten zeigen die magnetischen Momente der beiden Atome in entgegengesetzte Richtungen (siehe Abbildung A). Die Gesamtmagnetisierung ist somit die Summe aller magnetischen Momente von Typ 1 (M1, blaue Pfeile) und Typ 2 (M2, grüne Pfeile). Aufgrund der entgegengesetzten Richtung ist die Größe der Gesamtmagnetisierung durch die Differenz M1M2 gegeben.

Wird ein nicht leitender Ferrimagnet erwärmt, erreicht die Wärme zunächst das Atomgitter, wodurch sich die Atome zufällig um ihre Ruhelage bewegen. Schließlich verursacht ein Teil der Wärme auch eine zufällige Rotation (Präzession) der Spins um ihre ursprüngliche, kalte Richtung. Dadurch geht die magnetische Ordnung verloren. Die Gesamtmagnetisierung M1M2 nimmt ab und verschwindet schließlich, wenn die Temperatur des Ferrimagneten eine kritische Temperatur, die sogenannte Curie-Temperatur, überschreitet. Obwohl dieser Prozess von grundlegender Bedeutung ist, ist seine Dynamik noch nicht gut verstanden. Selbst für den Ferrimagneten Yttrium-Eisen-Granat (YIG), einen der am intensivsten erforschten Ferrimagnete, ist nicht bekannt, wie lange es dauert, bis das erwärmte Atomgitter und die kalten magnetischen Spins miteinander ins Gleichgewicht kommen. Bisherige Schätzungen dieser Zeitskala unterscheiden sich um einen Faktor von bis zu einer Million.

Ein Team von Wissenschaftlern aus Berlin (Sonderforschungsbereich/Transregio 227, Fritz-Haber-Institut und Max-Born-Institut), Dresden (Helmholtz-Zentrum), Uppsala (Schweden), St. Petersburg (Russland) und Sendai (Japan) hat nun die elementaren Schritte dieses Prozesses aufgedeckt. „Um das Atomgitter eines YIG-Films augenblicklich und ausschließlich zu erwärmen, verwenden wir eine sehr spezifische und neuartige Art von Anregung: ultrakurze Laserlichtblitze bei Terahertz-Frequenzen. Mit einem nachträglich eintreffenden sichtbaren Laserimpuls können wir dann Schritt für Schritt die Entwicklung der zunächst kalten magnetischen Spins nachvollziehen. Im Wesentlichen nehmen wir einen Stop-Motion-Film über die Entwicklung der Magnetisierung auf“, sagt Sebastian Maehrlein, der die Experimente am Fritz-Haber-Institut der Max-Planck-Gesellschaft durchführte. Sein Kollege Ilie Radu fasst zusammen: „Unsere Beobachtungen sprechen eine klare Sprache. Wir fanden heraus, dass eine plötzliche Erwärmung des Atomgitters die magnetische Ordnung des Ferrimagneten auf zwei verschiedenen Zeitskalen reduziert: eine unglaublich schnelle Skala von nur 1 ps und eine 100.000-mal langsamere Skala von 100 ns.“

Diese beiden Zeitskalen können analog zu Wasser in einem geschlossenen Topf, der in einen heißen Ofen gestellt wird, verstanden werden. Die heiße Luft des Ofens entspricht dem heißen Atomgitter, während die magnetischen Spins dem Wasser im Topf entsprechen (siehe Abbidung A). Wird das Atomgitter durch den Terahertz-Laserblitz erwärmt, führen die verstärkten zufälligen Schwingungen der Atome zu einer Übertragung der magnetischen Ordnung von Spintyp 1 auf Spintyp 2. Daher werden die beiden magnetischen Momente M1 (blaue Pfeile in Abbildung B) und M2 (grüne Pfeile) um genau den gleichen Betrag reduziert (rote Pfeile). Dieser Prozess entwickelt sich auf der schnellen Zeitskala, und die atomaren Spins sind gezwungen, sich bei konstanter Gesamtmagnetisierung M1M2 aufzuheizen, genau wie Wasser in einem geschlossenen Topf, das sein Volumen halten muss.

Der aufgeheizte Ferrimagnet möchte aber nicht nur M1 und M2, sondern auch seine Gesamtmagnetisierung M1M2 verkleinern. Dazu muss ein Teil des Spins an das Atomgitter abgegeben werden. Diese Situation ist wiederum völlig analog zum heißen Wasser in einem geschlossenen Topf: Der Druck im Topf steigt an, wird aber durch kleine Lecks im Deckel langsam nach außen abgegeben (siehe Abbildung C). Diese Übertragung von Drehimpuls an das Atomgitter ist genau das, was im Ferrimagneten durch schwache Kopplungen zwischen den Spins und dem Gitter passiert.

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. „Unsere Ergebnisse sind auch für Anwendungen in der Datenspeicherung relevant“, ergänzt Sebastian Maehrlein. „Der Grund ist einfach. Wann immer wir den Wert eines Bits in einem magnetischen Speichermedium zwischen 0 und 1 umschalten wollen, müssen letztlich Drehimpuls und Energie zwischen Atomgitter und Spins übertragen werden.“

Pressekontakte:

Prof. Tobias Kampfrath, tobias.kampfrath@fu-berlin.de, +49 30 8413–5222; FHI PC Department Office: +49 30 8413–5112
Dr. Ilie Radu, radu@mbi-berlin.de, +49 30 6392 1357; Max Born Institute Berlin, Germany

Originalveröffentlichung:
S. F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M. Gensch, A. M. Kalashnikova, R. V. Pisarev, M. Wolf, P. M. Oppeneer, J. Barker, T. Kampfrath, Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).

 

Tobi

Heizen eines Magneten, ohne seine Magnetisierung zu ändern. (A) Ein Ferrimagnet besteht aus zwei Spinsorten mit entgegengesetztem magnetischem Moment (grüne und blaue Pfeile). Im Experiment wird das Atomgitter des Ferrimagneten durch einen extrem kurzen Terahertz-Lichtblitz aufgeheizt. Die Situation is analog zum Erhitzen von Luft (=Atomgitter) in einem Ofen, der einen Topf mit Wasser (=Spins) enthält. (B) Wärme wird in die Spins übertragen und erniedrigt die Magnetisierung jeder Spinsorte um genau denselben Betrag. Dieser Prozess läuft ab, indem Spin (rote Pfeile) von der blauen in die grüne Spinsorte übertragen wird. Folglich heizt sich der Magnet auf, ohne seine Gesamtmagnetisierung zu ändern! In der Topf-Analogie wird die Wärme der Ofenluft ins Wasser innerhalb des Topfes übertragen. Die Wassermenge im Topf hat sich dabei nicht geändert; jedoch hat sich ein Überdruck aufgebaut. (C) Der Spin-Überdruck führt schließlich zur Übertragung von Spin-Drehimpuls ins Atomgitter. Dabei verkleinert sich die Magnetisierung des Ferrimagneten. In der Topf-Analogie baut sich der Wasser-Überdruck durch kleine Lecks im Topfdeckel ab


John B. Fenn Award for a Distinguished Contribution in Mass Spectrometry für Gert von Helden

Wednesday, 2nd May 2018Diverses
Gert von Helden erhält, zusammen mit Martin Jarrold und David Clemmer (beide Indiana University, USA), den 2018 „John B. Fenn Award for a Distinguished Contribution in Mass Spectrometry“ der American Society for Mass Spectrometry (ASMS). Die Auszeichnung würdigt eine bestimmte Leistung in  grundlegenden oder angewandten Aspekten der Massenspektrometrie und wird verliehen für bahnbrechende Beiträge in der Entwicklung der Ionenmobilitätsspektrometrie (IMS).
Siehe https://www.asms.org/about-asms-awards/distinguished-contribution

A comprehensive volume on chemical warfare entitled „One Hundred Years of Chemical Warfare: Research, Deployment, Consequences“ has been published under the auspices of the Max Planck Society

Wednesday, 6th December 2017Ausgewählte Publikationen, Diverses

ProductFlyer-9783319516639On April 22, 1915, the German military released 150 tons of chlorine gas at Ypres, Belgium. Carried by a long-awaited wind, the chlorine cloud passed within a few minutes through the British and French trenches, leaving behind at least 1,000 dead and 4,000 injured. This chemical attack, which amounted to the first use of a weapon of mass destruction, marks a turning point in world history. The preparation as well as the execution of the gas attack was orchestrated by Fritz Haber, the director of the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry in Berlin-Dahlem. During World War I, Haber transformed his research institute into a center for the development of chemical weapons (and of the means of protection against them).

Bretislav Friedrich and Martin Wolf (Fritz Haber Institute of the Max Planck Society, the successor institution of Haber’s institute) together with Dieter Hoffmann, Jürgen Renn, and Florian Schmaltz (Max Planck Institute for the History of Science) organized an international symposium to commemorate the centenary of the infamous chemical attack. The symposium examined crucial facets of chemical warfare from the first research on and deployment of chemical weapons in WWI to the development and use of chemical warfare during the century hence. The focus was on scientific, ethical, legal, and political issues of chemical weapons research and deployment — including the issue of dual use — as well as the ongoing effort to control the possession of chemical weapons and to ultimately achieve their elimination.

The volume consists of papers presented at the symposium and supplemented by additional articles that together cover key aspects of chemical warfare from 22 April 1915 until the summer of 2015.

The book was presented at a symposium on November 30, 2017 to the delegates of the 22nd Conference of State Parties of the Chemical Weapons Convention at the Organization for the Prohibition of Chemical Weapons in The Hague. Introduced by Paul Walker (Green Cross) and presented and moderated by Bretislav Friedrich (FHI), the symposium entitled „One Hundred Years since Ypres and Counting: Glimpses of the Past and the Present“ explained the involvement of the Max Planck Society and provided a sampling of the book’s chapters by Edward Spiers (University of Leeds), Ulf Schmidt (University of Kent), Karin Mlodoch (Haukari), and Ralf Trapp (Chessenaz). Among the attendees were four survivors of the 1988 Halabja chemical attack.

Website: http://www.springer.com/de/book/9783319516639
eBook available at https://link.springer.com/book/10.1007/978-3-319-51664-6


ENI Award für Professor Robert Schlögl

Tuesday, 10th October 2017Preise und Auszeichnungen

Der auch als „Nobelpreis für Energie“ bezeichnete ENI Award in der Kategorie Energy Transition wurde in diesem Jahr an Professor Robert Schlögl verliehen. Wir gratulieren zu dieser renommierten Auszeichnung. Lesen Sie hier mehr darüber:

Der Preis und die Preisträger 2017: https://www.eni.com/en_IT/innovation/eni-award.page

Robert Schlögl: https://www.eni.com/en_IT/innovation/eni-award/2017-schlogl-energy-transition.page

ENI-Pressemitteilung: https://www.eni.com/en_IT/media/2017/10/10th-eni-award-2017-prizes-awarded-for-scientific-research-in-the-field-of-the-energy-and-the-environment

ENI_Robert Schloegl

Quelle: ENI


Azubipreis für Robert Hippmann Pena

Tuesday, 5th September 2017Diverses

Wir sind sehr stolz, dass einer der in diesem Jahr verliehenen Azubipreise der MPG an unseren Auszubildenden Robert Hippmann Pena ging. Der Preis wird alljährlich vom Präsidenten der Max-Planck-Gesellschaft an bis zu 20 Auszubildende verliehen. Damit werden herausragende berufliche und schulische Leistungen während der Ausbildung sowie die persönliche Entwicklung und das soziale Engagement der jungen Leute gewürdigt. Der Preis ist mit 750,00 Euro dotiert.

Robert Hippman_pse

Die Aufnahme zeigt Robert Hippmann Pena (rechts) mit seinem Ausbilder Jörg Wagatha bei der Übergabe der Urkunde im Büro des Geschäftsführenden Direktors.


Gert von Helden erhält Professur an der Radboud Universität Nijmegen

Wednesday, 28th June 2017Preise und Auszeichnungen

Die Radboud Universität hat eine Pressemitteilung zur Ernennung Gert von Heldens zum Professor für „IR Spectroscopy of Biomacromolecules“ herausgebracht. Den genauen Wortlaut finden Sie hier.


Professor Robert Schlögl erhält Ehrentitel der TU München

Thursday, 13th April 2017Preise und Auszeichnungen

Das erweiterte Hochschulpräsidium der Technischen Universität München (TUM) hat einstimmig beschlossen, Herrn Professor Robert Schlögl den Ehrentitel „TUM Distinguished Affiliated Professor“ zu verleihen.

Im Brief des Präsidenten heißt es: „… die Technische Universität München verleiht den Ehrentitel „TUM Distinguished Affiliated Professor“ an Persönlichkeiten, deren wissenschaftliches Werk von international prägender Wirkung auf die eigene Disziplin ist, aber auch darüber hinausgehende Impulse in der wissenschaftlichen Welt gesetzt hat.Wir ehren damit gleichermaßen das öffentliche Vorbild, das aus der wissenschaftlichen oder künstlerischen Exzellenz unserer Ehrenprofessoren resultiert.

Diese Auszeichnung wird selten verliehen. Bisherige Preisträger sind u.a. Prof. Rudolph A. Marcus, Nobelpreisträger für Chemie, und Prof. Robert Graselli, einer der berühmtesten Katalyseforscher…“